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Abstract. A new Stata command called mgof is introduced. The command is used
to compute distributional tests for discrete (categorical, multinomial) variables.
Apart from classic large sample χ2-approximation tests based on Pearson’s X2, the
likelihood ratio, or any other statistic from the power-divergence family (Cressie
and Read 1984), large sample tests for complex survey designs and exact tests
for small samples are supported. The complex survey correction is based on the
approach by Rao and Scott (1981) and parallels the survey design correction used
for independence tests in svy: tabulate. The exact tests are computed using
Monte Carlo methods or exhaustive enumeration. An exact Kolmogorov-Smirnov
test for discrete data is also provided.
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1 Introduction

A fundamental task in statistics is to test whether an observed distribution differs from
a theoretical null distribution, yet support for such tests is incomplete in the standard
release of Stata. There are tools to test continuous distributions such as normality tests
([R] sktest, [R] swilk) and a one-sample Kolmogorov-Smirnov test ([R] ksmirnov).
However, distributional tests for discrete variables are missing.

This lack of tests for discrete variables might not seem to be an issue of serious
concern since the classic multinomial goodness-of-fit test is a simple χ2 test based on
Pearson’s X2, which is easy to compute from the values of a frequency table ([R] tabu-
late). Furthermore, several user implementations are available for this test (e.g. Weesie
1997). However, the classic test is only valid in simple random samples and cannot be
used with sampling weights or other complex survey features. Furthermore, the classic
test is only asymptotic and may be biased in small samples or when the null distribution
is very uneven.

I therefore present a new command called mgof that performs goodness-of-fit tests
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for discrete variables. The command supports complex survey designs and also offers
exact tests for small samples. The complex survey tests are based on the approach
by Rao and Scott (1981) and parallel the survey design correction used for indepen-
dence tests in official tabulate ([SVY] svy: tabulate twoway). The exact tests are
computed by sampling from the null distribution (Monte Carlo method) or by enumer-
ating all possible data configurations (exhaustive enumeration technique). Supported
test statistics include Pearson’s X2, the likelihood ratio, and any other statistic from
the Cressie and Read (1984) family. Further offered tests are the exact multinomial
probability test and the exact discrete Kolmogorov-Smirnov test.

2 Syntax and options

The default for mgof is to perform classical large sample χ2 approximation tests, op-
tionally with survey design correction. Alternatively, mgof computes exact tests using
Monte Carlo methods (mc option) or exhaustive enumeration (ee option). The syntax
is:

mgof varname
[
=exp

] [
weight

] [
if

] [
in

] [
, options

]
mgofi #1 #2 ...

[
/ p1 p2 ...

] [
, options

]
options description

Method 1
approx

[
(#)

]
compute large sample χ2 tests; the default

svy
[
(svyspec)

]
adjust tests for survey design

vce(vcetype) adjust tests using proportion variance estimate
cluster(varname) adjust tests for intragroup correlation
noisily show output from proportion

Method 2
mc compute Monte Carlo exact tests
reps(#) number of replications for mc; default is reps(10000)
level(#) set confidence level for mc; default is level(99)
citype(citype) set confidence interval type for mc; default is citype(exact)

Method 3
ee compute exhaustive enumeration exact tests

Test statistics
nox2 suppress Pearson’s X2 statistic
nolr suppress log likelihood ratio statistic
cr

[
(#)

]
include Cressie-Read statistic; # defaults to 2/3

mlnp include log outcome probability statistic (mc and ee only)
ksmirnov include Kolmogorov-Smirnov statistic (mc and ee only)

(Continued on next page)
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Other options
freq display frequency table
percent display frequency table in percent
matrix(name) provide matrix containing observed and expected counts
expected(name) provide matrix (column vector) containing expected counts
nodots suppress progress dots (mc and ee only)

by is allowed (unless svy is specified); see [D] by. fweights, pweights, and iweights are
allowed; see [U] 11.1.6 weight; restrictions: pweights are not allowed with ee or mc; iweights
are not allowed with ee, and not with mc if the mlnp option is specified.

The (theoretical) null distribution (the distribution against which varname is tested)
is specified by exp. exp is assumed to evaluate to the hypothesized probabilities of the
categories of varname or to quantities proportional to these probabilities (e.g. expected
counts; the scale does not matter). If exp is omitted, the uniform (geometric, equiprob-
able) distribution is used as the theoretical distribution.

mgofi is the immediate form of mgof ([U] 19 Immediate commands) where #1 ,
#2 , etc. specify the observed counts and, optionally, p1 , p2 , etc. specify the theoretical
probabilities or expected counts.

Method 1 options

approx
[
(#)

]
, the default method, computes classical large sample χ2 approximation

tests based on Pearson’s X2 and the log likelihood ratio statistic (see, e.g., Horn 1977,
Cressie and Read 1989, Sokal and Rohlf 1995, Ch. 17). The degrees of freedom for χ2

tests are determined as k−#−1 where k is the number of categories and #, provided
by the user, indicates the number of fitted parameters (imposed restrictions) (#’s
default is 0). If pweights are specified, the tests are corrected as outlined in Section
4.

svy
[
(
[
vcetype

] [
, svy options

]
)
]

specifies that the test results be adjusted for survey
design effects according to the svyset specifications (see [SVY] svyset). vcetype and
svy options are as described in [SVY] svy. The correction procedure is described in
Section 4. The svy option is not allowed with mgofi.

vce(vcetype) specifies that the variance-covariance matrix of the proportions be esti-
mated using the proportion command (see [R] proportion) and that the tests be
adjusted based on this estimate (see Section 4 below). vcetype may be analytic,
cluster clustvar , bootstrap, or jackknife (plus possible suboptions as described
in [R] vce option). analytic and cluster clustvar are not allowed with Stata 9.
The vce() option is not allowed with mgofi.

cluster(clustvar) is Stata 9 syntax for vce(cluster clustvar). The cluster() option
is not allowed with mgofi.

noisily displays the output from the proportion command, which is used to esti-
mate the variances of the proportions if svy, vce(), or cluster() is specified or if
pweights are applied.
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Method 2 options

mc causes the exact p-values to be approximated by sampling from the null distribution
(Monte Carlo simulation). The default number of replications for the simulation is
10,000; see the reps() option (the same set of samples is used for all test statistics).
99% confidence intervals are displayed for the estimated p-values.

reps(#) sets the number of replications for the mc method. The default is 10,000.

level(#) sets the level for the confidence intervals of the p-values computed by the mc
method. The default is level(99). Note that, unlike many other Stata commands,
mgof does not depend on set level (see [R] level).

citype(type) specifies how the binomial confidence intervals for the p-values from the
mc method are to be calculated. Available types are exact, wald, wilson, agresti,
and jeffreys. See [R] ci. citype(exact) is the default.

Method 3 option

ee causes the exact p-values to be computed by cycling through all possible data com-
positions given the sample size and the number of categories. Since the number of
compositions grows very fast—it is equal to (n + k − 1)!/((k − 1)!n!) where n is the
sample size and k is the number of categories—the ee method is only feasible for
very small samples and few categories. An important exception is when the null dis-
tribution is uniform (and ksmirnov is not specified). In this case the tests are based
on enumerating partitions, which are much fewer in number than compositions.

Test statistics options

nox2 suppresses Person’s X2 statistic.

nolr suppresses the likelihood ratio statistic.

cr
[
(#)

]
specifies that the Cressie-Read statistic with parameter λ = # be included

(Cressie and Read 1984; also see Weesie 1997). The default for # is 2/3.

mlnp requests that a test based on the (minus log) multinomial probability of the ob-
served outcome be included (see Horn 1977). mlnp is not allowed with the approx
method.

ksmirnov requests that the two-sided Kolmogorov-Smirnov statistic be included. The
Kolmogorov-Smirnov statistic is sensitive to the order of the categories and should
only be used with variables that have a natural order (i.e. ordinal or discrete met-
ric data). Note that the Kolmogorov-Smirnov test implemented in official Stata’s
ksmirnov is conservative in the case of discrete data (see, e.g., Conover 1972). The
methods implemented here are exact. ksmirnov is not allowed with approx.
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Other options

freq displays a table containing observed and expected frequencies.

percent displays a table containing observed and expected percent.

matrix(name) specifies that the observed and expected counts are to be taken from
matrix name (see [P] matrix). The first column of the matrix provides the observed
counts and the second column, if present, provides the expected counts or theoretical
probabilities. The uniform distribution is used if the matrix does not contain a
second column. Do not provide non-integer observed counts with the ee or mc
methods. The matrix() option is not allowed with mgofi.

expected(name) specifies that the expected counts or theoretical probabilities are to
be taken from column vector name (see [P] matrix). mgof aborts if the number of
elements in the vector does not match the number outcomes.

nodots causes the progress dots for the ee and mc methods to be suppressed. The
default is to display a dot for each 2 percent of completed computations.

Returned results

Scalars
r(N) number of observations r(N pop) population size
r(N strata) number of strata r(N psu) number of PSUs
r(N clust) number of clusters r(df r) design degrees of freedom
r(df) degrees of freedom for χ2 r(df1) numerator d.f. for F
r(df2) denominator d.f. for F r(delta) mean generalized design effect
r(a2) squared variation coefficient

of generalized design effects
r(reps) number of replications

r(partitions) number of partitions r(compositions) number of compositions
r(stat) value of test statistic r(F stat) design corrected F
r(p stat) (design corrected) p-value r(p stat srs) uncorrected p-value
r(p stat lb) lower C.I. bound for p-value r(p stat ub) upper C.I. bound for p-value

where stat is x2 (Pearson’s X2), lr (log likelihood ratio), cr (Cressie-Read
statistic), mlnp (minus log outcome probability), or ksmirnov (Kolmogorov-
Smirnov D)

Macros
r(depvar) name of tabulated variable r(h0) definition of the theoretical

distribution
r(method) test method r(stats) list of test statistics
r(lambda) Cressie-Read λ r(citype) Monte Carlo C.I. type
r(cilevel) Monte Carlo confidence level

Matrix
r(count) observed and expected counts
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3 Classic large sample tests

The classic large sample goodness-of-fit tests for discrete data are based on the result
that statistics such as Pearson’s

X2 =
k∑

j=1

(fj − hj)2

hj

where fj and hj are the observed and expected (theoretical) counts for the categories
j = 1, . . . , k, the likelihood ratio statistic

G2 = 2
k∑

j=1

fj ln
(

fj

hj

)
or, generally, the power-divergence statistic (Cressie and Read 1984)

D2(λ) =
2

λ(λ + 1)

k∑
j=1

fj

[(
fj

hj

)λ

− 1

]

are asymptotically χ2(k − 1) distributed.1 Significance level α given, an observed dis-
tribution is considered significantly different from the null distribution if the chosen
test statistic exceeds the (1 − α) quantile of the χ2 distribution with (k − 1) degrees
of freedom. For guidelines on choosing a test statistic see the “Which Test Statistic?”
sections in Read and Cressie (1988). One result, for example, is that in small samples
the approximation of the χ2-distribution is much better for Pearson’s X2 than for the
likelihood ratio. Based on various simulations, Read and Cressie (1988) propose the
λ = 2/3 power-divergence statistic as a good compromise in a wide range of situations.
λ = 2/3 is the default for D2(λ) in mgof.

As an example, assume testing a sequence of numbers against Benford’s law. The
law states that under certain conditions the first digit of numbers in the base 10 system
follows a probability distribution given as

Pr(d) = log10(1 + 1/d), d ∈ {1, . . . , 9}

(Newcomb 1881, Benford 1938, Hill 1998). In a small Swiss mail survey, respondents
were asked to indicate the first digit of the street number of an acquaintance.2 The
distribution of the indicated digits is astonishingly close to Benford’s law, as the results
from mgof reveal:

1. Note that the Cressie-Read statistic is equal to Pearson’s X2 if λ = 1 and, as the limiting value,
to the likelihood ratio if λ = 0. Further special cases are the Freeman-Tukey statistic with λ = −1/2,
the Kullback-Leibler information with λ = −1, and Neyman’s modified X2 statistic with λ = −2 (see
Cressie and Read 1984, Weesie 1997).

2. The survey was conducted in December 2006 and January 2007 by the Sociology Department
of the ETH Zurich. Respondents were sampled from the residents of the German speaking part of
Switzerland. The street number question was included towards the end of a very short questionnaire
on income inequality. It had no relation to the other questions. The response rate of the survey was
41%.
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. use digits, clear
(2007 Swiss Street Number Data)

. mgof firstdigit = log10(1+1/firstdigit), cr percent

Number of obs = 313
N of outcomes = 9
Chi2 df = 8

Goodness-of-fit Coef. P-value

Pearson’s X2 6.226606 0.6219
Log likelihood ratio 6.475677 0.5941

Cressie-Read (2/3) 6.303507 0.6133

firstdigit observed expected

1 32.59 30.10
2 17.57 17.61
3 14.70 12.49
4 10.86 9.69
5 6.39 7.92
6 6.07 6.69
7 4.47 5.80
8 4.15 5.12
9 3.19 4.58

Total 100.00 100.00

The p-values of the tests based on Pearson’s X2, the Cressie-Read statistic, and the
likelihood ratio statistic suggest that the null hypothesis of Benford distributed digits
cannot be rejected.

4 Survey design correction for large sample tests

The results of the standard χ2 tests are only valid for simple random samples. In
the case of non-identical sampling probabilities, non-independence, or stratification, the
tests may be considerably biased. mgof therefore offers a survey design correction which
is based on Rao and Scott (1981) and is analogous to the default independence test
correction used in svy: tabulate twoway (see [SVY] svy: tabulate twoway and the
references therein). The procedure determines the “design effects” for the variances of
the proportion estimates for the single outcomes and then corrects the χ2 test statistic
for the level and variation of these design effects. Rao and Scott (1981) call this a
second order correction; a first order correction would ignore the variation in design
effects. Finally, the corrected statistic is converted into an F statistic to adjust for the
degrees of freedom of the employed variance estimates.

More precisely, let V̂ /(n−1) be a consistent estimate of the variance-covariance ma-
trix of the proportion estimates p̂i, i = 1, . . . , k, where n is the number of observations.
Furthermore, let v̂ij denote an element of V̂ , m be the number of PSUs or clusters, and
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L be the number of strata. The correction then assumes

F =
χ2

δ̂.(â2 + 1))
· d−1 =

χ2

δ̂.

· (k − 1)−1

to be F (d, (m− L)d) distributed, where χ2 stands for X2, G2, or D2(λ), and where

δ̂. = (k − 1)−1
k∑

i=1

v̂ii/p̂i, â2 =

(k − 1)−1
k∑

i=1

k∑
j=1

v̂2
ij/(p̂ip̂j)

 · (δ̂2
. − 1)−1,

and d = (k − 1)/(1 + â2). δ̂. is the the mean and â2 the squared variation coefficient
of the “generalized design effects” for the proportions (Rao and Scott 1981). Official
proportion is used to estimate V̂ /(n − 1) taking into account pweights, clusters, or
other complex survey design settings (see [R] proportion for details).

Sribney (1998; also see Thomas et al. 1996) provides simulation evidence indicating
that the F -based variant of the second order Rao-Scott correction works well for inde-
pendence tests in two-way contingency tables. Although it appears reasonable to assume
that these results translate to goodness-of-fit tests in one-way tables, it seems important
to perform at least a few brief checks. I therefore ran the following simulations.3

Simulation 1

Simulation 1 parallels the simulation reported by Sribney (1998). In each replication, a
sample was initialized by drawing a number of cluster sizes from a uniform distribution
and expanding the clusters to individual observations. Then two sets of variables with
categorical values d ∈ {1, . . . , k} and k varying between 2 and 9 were generated from an
underlying continuous variable y, which was N(0, 1)-distributed and had an intra-class
(cluster) correlation of 0.25 (see Sribney 1998 for details on how to generate such a vari-
able). For the first set of categorical variables, y was categorized using normal quantiles
with equally spaced probabilities, so that the variables had a geometric (uniform) dis-
tribution. For the second set, the cut points were chosen according to Benford’s first
digit law (see references above) where the base of the number system was set to k + 1.
Hence, the probabilities of the categories of the variables in the second set were given
as

Pr(d) = log(1 + 1/d)/ log(k + 1), d ∈ {1, . . . , k}

For a variable with two categories, for example, the probabilities were (0.631, 0.369); for
a variable with nine categories they were (0.301, 0.176, . . . , 0.046).

As in Sribney (1998), two types of simulations were conducted, one with small
variance degrees of freedom (few PSUs) and one with large variance degrees of freedom
(many PSUs). For the simulations with few PSUs, 20 clusters were generated with
sizes between 30 and 70 observations, resulting in a sample size of approximately 1000
observations. For the simulations with many PSUs, 200 clusters were generated with

3. See Thomas and Rao (1987) and Rai et al. (2001) for additional results.
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sizes between 3 and 10 observations, resulting in a sample size of approximately 1200
observations.4 Ten-thousand replications were computed for both types and the nominal
significance level was set to α = 0.05. Note that in comparison to the simulation by
Sribney (1998), the clusters were re-generated in each replication.

The results of the simulations are depicted in Figures 1 and 2. Tests based on the
first and second order Rao-Scott corrections (RS1 and RS2, respectively) according to
the following definitions are evaluated:

X2
RS1 = X2/δ̂.

a∼ χ2(k − 1)

FRS1 = X2
RS1/(k − 1) a∼ F (k − 1, (m− L)(k − 1))

X2
RS2 = X2

RS1/(1 + â2) a∼ χ2(d)

FRS2 = X2
RS2/d

a∼ F (d, (m− L)d)

FRS2 corresponds to the default correction method outlined above. Furthermore, an
adjusted Wald F test is considered with

FW
adj = W

(m− L)− (k − 1) + 1
(m− L)(k − 1)

a∼ F (k − 1, (m− L)− (k − 1) + 1)

where

W = (p̂∗ − p∗)T (V̂ ∗/(n− 1))−1(p̂∗ − p∗)

and where p̂ = (p̂1, . . . , p̂k) and p = (p1, . . . , pk) are the vectors of observed and expected
probabilities and the asterisk indicates that one of the categories is left out (see, e.g.,
Thomas and Rao 1987).5

In the case of small variance degrees of freedom (Figure 1), both the first order Rao-
Scott corrected tests (RS1) and the adjusted Wald F test are highly anti-conservative
(i.e. rejecting the null hypothesis to often) as the number of categories increases. The
second order Rao-Scott corrected X2 test is also anti-conservative, but the bias does
not depend on the number of categories. For the second order Rao-Scott corrected F
test, however, the simulated rejection rates match the nominal 5 percent very well. In
the case of large variance degrees of freedom (Figure 2), the first order Rao and Scott
corrected tests and the adjusted Wald F test are still slightly anti-conservative. The
second order Rao-Scott correction again performs well, at least for the uniform variables.
With the Benford distributed variables, the second order Rao-Scott correction seems to
be slightly conservative.6

4. The number of 1300 given in Sribney (1998) seems to be incorrect.
5. Rao-Scott corrected tests based on the likelihood ratio statistic were also conducted. Results were

similar to the tests based on Pearson’s X2.
6. Note that in both simulations, the uncorrected tests were highly anti-conservative (51–57% and

11–16% rejection, respectively).
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Figure 1: Rejection rates in the small variance degrees of freedom simulations
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Simulation 2

Simulation 1 is model-based and somewhat artificial. To get an impression of the per-
formance of the Rao-Scott correction in a more realistic setting, I conducted a second
simulation based on sampling from a “real” population, the Swiss 2000 Census.7

The sampling plan for the simulation was as follows. First, a total of 100 munici-
palities was sampled proportional to size (with replacement) from 15 strata (the Swiss
cantons, with some aggregations). Second, 10 households were drawn with replacement
from each sampled municipality and from each sampled household one individual was
selected. The a priori sampling probabilities for the individuals varied depending on
household size and due to moderate oversampling of small strata. The gsample user
command was used to draw the samples (Jann 2006).

A number of categorical variables were tested with the true population distribution
as the null hypothesis. The variables included sex (1 = male, 2 = female), nationality
(Swiss, foreign), marital status (single, married, divorced, widowed), education (6 lev-
els), and socio-economic status (12 levels). The distributions, representing a broad mix
of patterns, are listed in Table 1.

Table 1: Population distributions (in percent)

1 2 3 4 5 6 7 8 9 10 11 12

Sex 48.5 51.5

Nationality 80.2 19.8

Marital status 30.1 56.3 6.9 6.8

Education 13.0 25.6 36.7 7.9 9.1 7.6

Socio-economic status 2.1 5.6 5.1 10.1 12.0 4.9 7.4 15.5 7.8 14.2 10.8 4.5

The rejection rates from 5000 replications with a nominal α = 0.05 significance
level are displayed in Table 2. The test statistics are the same as in Simulation 1,
namely, first and second order Rao-Scott corrections of Pearson’s X2, with and without
F -conversion, and the adjusted Wald F .8 In addition, rejection rates for Pearson’s X2

without correction are reported (X2
SRS). As is evident from the rejection rates in the last

column in Table 2 (up to 40%), the uncorrected tests yield intolerably anti-conservative
results in such a sample. Among the considered correction procedures, the second order
Rao-Scott F performed best. The rejections rates for FRS2 closely match the nominal
5% for sex, education, and socio-economic status, but are somewhat anti-conservative
for nationality and marital status, possibly due to the strongly skewed distributions of

7. The Swiss Census was conducted by the Swiss Federal Statistical Office and covers all residents
of Switzerland in December 2000. For the purpose of the simulation, I restricted the population
to individuals of age 15 or older. The population then consisted of 6,043,350 individuals, 3,179,246
housholds, and 2,896 municipalities. The strata sizes varied between 200 thousand and one million
individuals.

8. Results for the Rao-Scott corrections based on the likelihood ratio statistic were similar.
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the two variables. The degree of anti-conservatism, however, is not dramatic, and is
smallest among all evaluated procedures. As in Simulation 1, the adjusted Wald F is
considerably anti-conservative in some cases.

Table 2: Rejection rates (in percent; 5000 replications)

X2
RS1 FRS1 X2

RS2 FRS2 FW
adj X2

SRS

Sex 4.9 4.6 4.9 4.6 4.7 16.6

Nationality 7.3 6.9 7.3 6.9 8.3 23.3

Marital status 9.3 9.0 7.1 6.7 13.8 29.1

Education 7.1 6.8 5.0 4.8 8.5 32.8

Socio-economic status 10.7 10.4 5.8 5.6 12.0 41.2

Overall, the results from Simulations 1 and 2 suggest that the second order Rao-
Scott corrected F test outperforms the other considered tests and is a good default
choice.

Example

In the example in Section 3 the digit distribution of house numbers of acquaintances
was analyzed. The survey from which the data was taken is based on a simple random
sample of households. Because only one adult was selected per household, the individ-
ual level sampling probabilities depended on the household size: individuals from larger
households had smaller sampling probabilities. Therefore one should apply probability
weights (inverse to the number of adult household members) to make the data repre-
sentative of the individual population instead of the population of households. Since
the standard tests would not be valid, mgof applies the complex survey design correc-
tion if pweights are specified. In addition to the uncorrected test statistics, corrected
F statistics and associated p-values are reported. The results from mgof applied to the
weighted example data are as follows:

. use digits, clear
(2007 Swiss Street Number Data)

. mgof firstdigit = log10(1+1/firstdigit) [pw=w]

Number of obs = 313
N of outcomes = 9
F df1 = 7.93123
F df2 = 2474.54

Goodness-of-fit Coef. F-value P-value

Pearson’s X2 6.144661 0.6435 0.7402
Log likelihood ratio 6.425913 0.6730 0.7145



Ben Jann 13

Again there is virtually no evidence to reject the null hypothesis that the data are
distributed according to Benford’s law.

A more general syntax to obtain results with design correction is to set the survey
properties using svyset (see [SVY] svyset) and then apply the svy option in mgof, as
in the following example:9

. svyset [pw=w]

pweight: w
VCE: linearized

Single unit: missing
Strata 1: <one>

SU 1: <observations>
FPC 1: <zero>

. mgof firstdigit = log10(1+1/firstdigit), svy

Number of strata = 1 Number of obs = 313
Number of PSUs = 313 Pop size = 583

Design df = 312
N of outcomes = 9
F df1 = 7.93123
F df2 = 2474.54

Goodness-of-fit Coef. F-value P-value

Pearson’s X2 6.144661 0.6435 0.7402
Log likelihood ratio 6.425913 0.6730 0.7145

5 Exact small sample tests

The χ2 distribution of statistics such as Pearson’s X2 is only asymptotic and the p-values
of the standard χ2 goodness-of-fit tests may be biased when the sample is very small or
the null distribution is highly uneven. In such cases it is desirable to compute the exact
p-values.

Exhaustive enumeration

The most straightforward approach to compute an exact goodness-of-fit test is to con-
struct all possible data combinations given the number of observations and the number
of categories and sum up the probabilities of all configurations that are at least as dis-
tant from the null hypothesis as the observed data (e.g. Radlow and Alf 1975). The
steps of the procedure may be summarized as follows:

1. Calculate the probability of each data configuration, given the null hypothesis.
Under simple random sampling, the probability of a specific configuration f =
(f1, . . . , fk) given expected cell probabilities p = (p1, . . . , pk) (the null hypothesis)

9. Due to some technical difficulties, the svy prefix command (see [U] 11.1.10 Prefix commands)
cannot be used with mgof.
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is

Pr(f |p) =
n!

(f1!f2! · · · fk!)
· pf1

1 pf2
2 · · · pfk

k

where n =
∑

f .

2. Calculate the value of the test statistic, say Pearson’s X2 or the likelihood ratio
statistic G2, for each data configuration, given the null hypothesis.

3. Compute the exact p-value as the sum of the probabilities of all configurations in
which the test statistic is at least as large as in the observed data.

A natural variant to using Pearson’s X2 or the likelihood ratio as the test criterion is
to directly use Pr(f |p) to determine whether a configuration adds to the p-value or not
(see e.g. Horn 1977). mgof offers such a multinomial probability test via the mlnp option,
where the reported outcome probability statistic is parameterized as − ln(Pr(f |p)) so
that large values indicate departure from the null distribution and the scaling is similar
to a χ2 statistic. Little evidence exists for whether directly using the multinomial
probability as the fit statistic is superior to using a statistic such as Pearson’s X2, but
both procedures yield “exact” p-values. The only difference is in how discrepancies
between the null hypothesis and the data are valued. While statistics such as Pearson’s
X2 are defined in terms of differences (or ratios) between expected and observed counts,
the direct approach uses the multinomial probability as the measure of discrepancy. In
general, different fit statistics give weight to different patterns of deviations from the
null and the usefulness of a specific statistic may depend on situation (Read and Cressie
1988, 136–137).

The method outlined above—whichever fit statistic is employed—is called the “ex-
haustive enumeration” method since all possible data configurations are enumerated. It
can be implemented using algorithms to construct k-part compositions of n (Reingold
et al. 1977; Nijenguis and Wilf 1978). For example, for n = 3 and k = 2 the possible
compositions are:10

. mata
mata (type end to exit)

: f = mm_compositions(3,2)

: f
1 2 3 4

1 3 2 1 0
2 0 1 2 3

: end

Using the sex distribution in a sample with three individuals as an example, possible
sample compositions are: 3 females and 0 males, 2 females and 1 male, 1 female and

10. The mm compositions() Mata function is part of the moremata package, which provides a number
of combinatorial algorithms (among many other functions) (Jann 2005).
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2 males, or 0 females and 3 males. Assume that the second outcome, 2 females and
1 male, is the observed outcome. To compute the p-value of the test that the ratio of
females to males is, say, 1 to 2, one would determine for each composition Pearson’s X2

and the probability of the composition given the null hypothesis, and then sum up the
probabilities of all compositions for which X2 is at least as large as the observed X2.
For example:11

. mata
mata (type end to exit)

: h = (1, 2)’

: x2 = colsum((f :- h):^2 :/ h)

: x2
1 2 3 4

1 6 1.5 0 1.5

: n = 3

: pr = exp(lnfactorial(n) :- colsum(lnfactorial(f)) :+ colsum(f :* ln(h :/ n)))

: pr
1 2 3 4

1 .037037037 .2222222222 .4444444444 .2962962963

: pvalue = sum(pr :* (x2 :>= x2[2]))

: pvalue
.5555555556

: end

The p-value is 0.556 and, hence, we cannot reject the null hypothesis (which is not
surprising given only three observations). The same result can be obtained by mgofi as
follows:

. mgofi 2 1 / 1 2, ee nodots

Number of obs = 3
N of outcomes = 2
Compositions = 4

Exact
Goodness-of-fit Coef. P-value

Pearson’s X2 1.5 0.5556
Log likelihood ratio 1.386294 0.5556

The number of possible data configurations increases rapidly with additional ob-
servations and categories (the combinatorial explosion), which imposes restrictions for
the application of the exhaustive enumeration method. The formula for the number of

11. The logarithmic form of Pr(f |p) is used here to turn products into sums and thus make computa-
tions easier. Also note that the logarithmic form is computationally more robust since lnfactorial()

can be evaluated for much larger numbers than factorial().
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k-fold compositions of n is (n + k − 1)!/((k − 1)!n!). For example, with n = 50 and
k = 5 the problem size is 316,251, which can be handled (mgof takes about about 7
seconds on my computer for a problem of this size). If k is increased to 6, the number
of compositions is 3,478,761, taking 80 second to compute. With k = 7 the number
further increases to 32,468,436 and with k = 10 it is 12,565,671,261, taking three to
four days.

The examples suggest that the exhaustive enumeration method is only feasible for
very small problems. Note, however, that in the case of a uniform null distribution
the amount of computations can be reduced a great deal due to redundancies among
the compositions. If all elements of h (and hence of p) are equal, then the order of the
elements in a composition does not affect the value of Pr(f |p) or X2. In the toy example
above, for instance, the compositions {2, 1} and {1, 2} would yield identical values for
Pr(f |p) and X2 if p is uniform, as would {3, 0} and {0, 3}. Hence, the exact p-values can
be computed by enumerating only compositions with unique sets of elements. These
compositions are equivalent to the (zero-padded) integer partitions of n into k or fewer
addends (Andrews 1984; Andrews and Eriksson 2004). For example, in the case of n = 4
and k = 3 possible partitions are:

. mata
mata (type end to exit)

: f = mm_partitions(4,3)

: f
1 2 3 4

1 4 3 2 2
2 0 1 2 1
3 0 0 0 1

: end

As is immediately clear, the number of partitions grows much slower with n and k
than the number of compositions. For example, for n = 50 and k = 10, as above,
the number of partitions is only 62,740, compared to 12.6 billion compositions. In the
case of a uniform null distribution it is therefore much more efficient to compute the
p-value based on partitions, where each partition is weighted by the number of possible
permutations (see, e.g., Hirji 1997).12

In the example in Section 3 there were 313 observations and 9 categories. This is
too large a problem for the exhaustive enumeration method (2.56 · 1015 compositions or
1.09 · 1010 partitions, respectively). For purpose of illustration we apply the exhaustive
enumeration tests using a 5% sample of the data:13

12. The number of permutations equals k!/(d1! · · · dI !), where di denotes the number of repetitions
of the ith distinct addend in the partition. The algorithm used by mgof to enumerate the partitions
is based on Algorithm ZS1 by Zohgbi and Stojmenovic (1998) with some modifications to generate
restricted partitions.
13. The gsample command is provided by Jann (2006).
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. use digits, clear
(2007 Swiss Street Number Data)

. gsample 5, percent generate(freq)

. mgof firstdigit = log10(1+1/firstdigit) [fw=freq], ee

Percent completed (735471 compositions)
0 20 40 60 80 100
..................................................

Number of obs = 16
N of outcomes = 9
Compositions = 735471

Exact
Goodness-of-fit Coef. P-value

Pearson’s X2 7.902401 0.4207
Log likelihood ratio 9.157266 0.4564

. mgof firstdigit [fw=freq], ee

Percent completed (201 partitions)
0 20 40 60 80 100
..................................................

Number of obs = 16
N of outcomes = 9
Partitions = 201

Exact
Goodness-of-fit Coef. P-value

Pearson’s X2 15.5 0.0557
Log likelihood ratio 18.13734 0.0348

The results indicate that the data in the sample are closer to Benford’s law than they
are to the uniform distribution. Note that, especially for the likelihood ratio, the ex-
act p-values can be considerably different from the approximate p-values in such small
samples. The approximate p-values are 0.443 and 0.329 for the tests against Benford’s
law and 0.050 and 0.020 for the equal probability case.

q Technical note

In the example above, the sample was marked using frequency weights instead of
constructing a dataset containing the sampled observations. The rationale behind this
was to ensure that all original categories remained visible to mgof even if some of
them were missing in the sample. In general, a goodness-of-fit test will be biased if
categories with theoretical probabilities greater zero are omitted from the test due to
lack of corresponding observations. Such “missing” categories can be introduced to
mgof by adding extra observations to the dataset and assigning zero weights to them.
Alternatively, zero observed counts can be specified using the immediate mgofi or the
matrix() option.
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Monte Carlo method

Many problems are too large for exhaustive enumeration but one might still want to
compute the exact p-values. An approach which is easy to implement and can handle
larger problems in reasonable time is to approximate the exact p-values by Monte Carlo
simulation. The approach is made by sampling from the null distribution14 and comput-
ing the p-value as the fraction of replications in which the test statistic is at least as large
as in the observed data. A drawback of the procedure is that the computed p-values are
subject to random variation (which, however, can be made arbitrarily small by increas-
ing the number of replications). Ninety-nine percent confidence intervals (computed
using cii; see [R] ci) are therefore reported by mgof.

Using the Benford example from Section 3, the Monte Carlo method can simulate
the exact p-values in a few seconds:

. use digits, clear
(2007 Swiss Street Number Data)

. mgof firstdigit = log10(1+1/firstdigit), mc

Percent completed (10000 replications)
0 20 40 60 80 100
..................................................

Number of obs = 313
N of outcomes = 9
Replications = 10000

Exact
Goodness-of-fit Coef. P-value [99% Conf. Interval]

Pearson’s X2 6.226606 0.6147 0.6021 0.6272
Log likelihood ratio 6.475677 0.5921 0.5793 0.6048

As can be expected for a sample of this size, the approximate p-values (0.6219 and
0.5941; see Section 3) are very close to the simulated exact p-values and lie within the
computed 99% confidence limits.

Discrete Kolmogorov-Smirnov test

In addition to the multinomial tests based on, say, Pearson’s X2 or the likelihood ratio,
mgof also offers an exact (two-sided) Kolmogorov-Smirnov test for ordered discrete data.
The Kolmogorov-Smirnov test has higher power than the multinomial tests, but is only
appropriate if the categories have a natural order.

The (two-sided) Kolmogorov-Smirnov test statistic is defined as the supremum (least
upper bound) of the absolute difference between the theoretical and the empirical dis-

14. Sampling from a null distribution is equivalent to sampling n units with replacement from a pop-
ulation of k elements, where the sampling weights for the elements correspond to the theoretical prob-
abilities of the categories.
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tribution function. In the discrete case, the statistic can be expressed as

D = max
j

|H(j)− F (j)|, j = 1, . . . , k

with

H(j) =
1
n

j∑
i=1

hi and F (j) =
1
n

j∑
i=1

fi

where hj and fj denote the expected and observed counts for category j (also see, e.g.,
Wood and Altavela 1978).

The distribution of the Kolmogorov-Smirnov statistic for continuous data is well
known (see [R] ksmirnov), but does not hold for discrete data (e.g. Conover 1972). mgof
therefore performs the discrete Kolmogorov-Smirnov test without making assumptions
about the distribution of D using Monte Carlo simulation or exhaustive enumeration.

In the Benford example in Section 3, an argument could be put forward that the
Kolmogorov-Smirnov test is more appropriate than the multinomial tests because the
digits do have a natural order. Indeed, the p-value from the Kolmogorov-Smirnov test
is considerably lower than the p-values based on Pearson’s X2 or the likelihood ratio:

. mgof firstdigit = log10(1+1/firstdigit), mc ksmirnov

Percent completed (10000 replications)
0 20 40 60 80 100
..................................................

Number of obs = 313
N of outcomes = 9
Replications = 10000

Exact
Goodness-of-fit Coef. P-value [99% Conf. Interval]

Pearson’s X2 6.226606 0.6311 0.6186 0.6435
Log likelihood ratio 6.475677 0.6093 0.5966 0.6219
Kolmogorov-Smirnov D .0582185 0.0967 0.0892 0.1046

6 Concluding remarks

A new and flexible command for multinomial goodness-of-fit tests was introduced. The
main features of the command are that it can be used with complex survey designs and
that it offers methods to determine exact p-values in small samples. Two limitations
should be mentioned.

The second-order Rao-Scott correction, which is used by the command to account
for survey design is an improvement over performing uncorrected tests or using the
Wald statistic, as was illustrated in the simulations in Section 4. However, there is also
some evidence that the correction is not always optimal. For example Magnussen and
Köhl (2006) is a study in which the second-order Rao-Scott correction did not perform
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as well as certain other procedures in the context of single-stage cluster sampling. A
comprehensive simulation in which different procedures are systematically evaluated
under various survey designs and data structures would be valuable.

Further, computational speed is a major concern when computing exact p-values.
The exhaustive enumeration method is slow or even unfeasible unless the sample is very
small. Some speed gains could be made if the underlying combinatorial algorithms,
which are currently implemented in Mata, would be ported to C, although this would not
much increase the range of feasible applications. A more promising approach would be
to implement fast algorithms for exact p-values extending the work of Mehta and Patel
(1983), Baglivo et al. (1992), or Hirji (1997). However, the returns on this appeared
limited to me given the availability of the Monte Carlo approximation method and given
the result that for Pearson’s X2 or Cressie-Read’s D2(2/3) (but not for G2) the χ2

approximation is usually quite good even with relatively small samples (e.g. Read 1984;
for a somewhat more conservative view Formann 1995). An exception may be if many
very small p-values have to be estimated with great accuracy (Keich and Nagarajan
2006). Although currently not planned, a future extension of the command to cover
such fast algorithms might therefore be desirable.
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